Nuclear Resonance Spectroscopy: Opportunities with New Radiation Sources

Gopal Shenoy Argonne National Laboratory

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Symposium 50 Years After - the Mössbauer Effect Today and in the Future Technische Universität München, Physics Department,

Garching (Germany), 9-10 October, 2008

Acknowledgements: Some of the early pioneers at Argonne and to a few hundred collaborator and friends DOE/BES for Funding the Research

Outline

- Recall Third Generation Sources
- Introduction to Next Generation Sources
- Opportunities in Materials Physics
- Dreams and Speculations

Why Synchrotron Radiation Sources?

Nuclear resonance and brightness of synchrotron radiation

10²³ photons / sec / eV / sr

1011 photons /sec / eV / sr

Incoherent Nuclear Resonant Inelastic X-ray Scattering (NRIXS)

Overview: 3rd generation sources

What Are the Requirements to Perform 14.4 keV ⁵⁷Fe Nuclear Resonance?

- Low Emittance Lattice and Top-up Operation
- Undulator Source: High Average Brilliance and High Average Flux
- High Current per Bunch ~ 5-20 mA
- Bunch Width ~ 50-100 ps
- Bunch-to-Bunch Separation ~ 100 300 ns (> 150 ns for ⁵⁷Fe)
- Clean Bunches (Purity ~ 10⁻¹⁰)
- Energy Width of Excitation (14.41 keV) Beam ~ 1-3 meV
- A Detector with a Time Resolution < 1 ns
 → Avalanche Photo Diodes (APDs)

Third-Generation Storage-Ring Facilities in the World where

One beamline each at four facilities supporting only part of the time due to availability of appropriate bunch pattern.

Over Subscription of Beamlines Geoscience, High Pressure Research, Biophysics, Material Physics

Comparison of Characteristics of the X-ray Beam from Undulator Sources Used for NRS (around 14 keV) at Third-generation Storage-ring Facilities.

Properties	Operating Third- Generation Facilities (APS, ESRF, SPring-8)	PETRA-III *
Energy (GeV)	6.0 - 8.0	6.0
Maximum Current (mA)	100 - 250	100
Horizontal Beam Emittance (nm.rad)	3.0-4.0	1.0
Undulator Length (m)	4.8 - 5.0	20
Brilliance ph/s/0.1%BW/mrad ²	1 - 2 x 10 ²⁰	2 x 10 ²¹
Vertical divergence (mrad)	3 - 5	3
Average Flux ph/s/meV	4 x 10 ⁹	2-4 x 10 ¹⁰
Bunch length (ps)	70-100	40
Rep Rate (MHz)	3.8-6.5	5.2
Photons/meV/bunch	0.6-1.0 x10 ³	5-8x10 ³
Brilliance ph/s/0.1%BW/mrad ² Vertical divergence (mrad) Average Flux ph/s/meV Bunch length (ps) Rep Rate (MHz) Photons/meV/bunch	1 - 2 x 10 ²⁰ 3 - 5 4 x 10 ⁹ 70-100 3.8-6.5 0.6-1.0 x10 ³	2 x 10 ²¹ 3 2-4 x 10 ¹⁰ 40 5.2 5-8x10 ³

List of Resonances Using the Third-Generation SR Facilities

Z	Isotope	E _o (keV)	t _o (ns)	Γ_{o} (neV)	σ _o (kbarn)	$\sigma_{ m o}/\sigma_{ m el}$
73	¹⁸¹ Ta	6.214	8730	0.075	1999	12
69	¹⁶⁹ Tm	8.410	5.89	110	242	7
36	⁸³ Kr	9.404	212.1	3.1	1226	152
26	⁵⁷ Fe	14.4125	141.1	4.7	2564	426
63	¹⁵¹ Eu	21.514	14.0	47	243	29
62	¹⁴⁹ Sm	22.496	10.3	64	120	17
50	¹¹⁹ Sn	23.871	35.6	26	1381	563
66	¹⁶¹ Dy	25.651	42	16	1110	176
19	⁴⁰ K	29.23	6	110	281	1337
51	¹²¹ Sb	37.133	5	130	195	40
28	⁶¹ Ni	67.41	7.5	88	721	8100
93	²³⁷ Np	59.5	98	7	310	115

What future sources are suitable for NRS?

- PETRA III Storage Ring , DESY, Hamburg
- · PEP III Storage Ring, SLAC, Stanford
- · LCLS SASE-XFEL, SLAC, Stanford
- · European SASE-FEL, DESY, Hamburg
- SASE SCSS-SPring8, Japan
- · PSI-XFEL, Switzerland

• Seeded XFEL - Future

What are the science directions using NRS at the future facilities?

Essence of a Free-Electron Laser

Incoherent Emission

Each electron is independently radiating and the phases of the electric fields are random

 $E \propto \sqrt{N_e}$ Intensity $\propto N_e$

Coherent Emission

If the electrons are in lock synch and radiate coherently, electric field grows linear with number of electrons

$$E \propto N_e$$

Intensity $\propto N_e^{2}$

Self-Amplified Spontaneous Emission (SASE)

Exponential Growth of Intensity in SASE Process Saturation

Does a SASE Laser Work?

- 1980First proposal1996First experimental observation $UCLA: \lambda = 16 \ \mu m$
- **Dec.** 1999 Argonne: lasing at $\lambda = 523$ nm
- Sep. 2000 Argonne: saturation at $\lambda = 523$ nm
- *Feb. 2001* VISA/BNL: saturation at $\lambda = 800$ nm
- Apr. 2001 Argonne: saturation at $\lambda = 265$ nm
- Sep. 2001 Hamburg -DESY: saturation at $\lambda = 100$ nm
- Oct. 2001 First user experiments @ DESY- FLASH(TTF)

These early developments led to VUV and X-ray FELs designs and construction.

A SASE FEL amplifies random electron density modulations

The SASE radiation is powerful, but noisy!

One solution: Impose a strong coherent modulation with an external laser source

Two of the Many Seeding Schemes Seeded XFEL (SXFEL)

Two Stage Seeding

FEL Oscillator

Diamond cavity for the X-FEL Oscillator

 $R_1 imes R_2 imes R_M = 0.91$ $T_1 \simeq 0.042$

K.J. Kim and Y. Shvydko

Saldin, et al. Nucl. Instrum. Methods in Physics A 475 (2001) 357–362

SASE FEL Output in Time and Energy Domain

Courtesy: Bill Graves, David Moncton MIT

Brightness of Syl	nchrotron	Radiatio	on Sou	rces
Generation Source	Electrons	U-Periods	Enha	ncemen
Bend Magnet	~ N _e	1		1
2nd { Wiggler	~ N _e	~ N _p		10
3 rd Undulator (APS. ESRF. SPrina-8	~ N _e 8. ERLs)	~ N _p ^{2-x}		104
SASE FEL	~ N _{mb} ²	~ N _p ²		109
Next Seeded FEL	~ N _e ²	~ N _p ²	•	<i>10¹²</i>
Argonne Symposium: 50 Years A	fter - the Mössbauer E 0, 2008	fect Today and in Gona	the Future	21

Gains to be made by SASE FEL and SXFEL over a Third Generation Storage Ring Source

Symposium: 50 Years After - the Mössbauer Effect Today and in the Future Garching October 9-10, 2008 Gopal Shenoy

Argonne

6 GeV: SASE SCSS–SPring8, Japan

Euro-XFEL SASE DESY Hamburg

PSI-XFEL, Switzerland

⁵⁷Fe NRS Dream Source: Seeded XFEL In next 20 years

Energy (keV – 3rd Harmonic)	~ 14.4
Pulse length (fs)	~ 30-40
Energy Resolution (meV)	~ 20
Rep Rate (kHz)	~ 10 - 100
Photons/meV/pulse	~ 10 ¹⁰ - 10 ¹⁴
Photons/meV/pulse/(1-20 nm) ² ~ 10 ⁸ - 10 ¹²

Revealing the Interactions in Condensed 10 eV Systems

Probing Inside a Nanorod with 1-20 nm Beam

Measuring the spatially-resolved diffusion dynamics in confined systems (nanofluidics)

Coherent forward scattering

 \rightarrow

Before atomic diffusion Scattered radiation in phase

Atomic jump during nuclear life-time leads to dephasing → scattered radiation

Molecular diffusion through Carbon Nanotube

Decorated Nanodot Interfaces, Surfaces....

Partial Phonon Density Of States of Iron Films

Fe films deposited on W(110) Transition from the bulk to a single iron monolayer

S. Stankov, R. Röhlsberger, T. Slezak, M. Sladecek, B. Sepiol, G. Vogl, A. I. Chumakov, R. Rüffer, N. Spiridis, J. Lazewski, K. Parlinski, and J. Korecki,

ESRF Highlights 2006

Phys. Rev. Lett. 99, (2007) 185501.

Can One Probe Far-From-Equilibrium Dynamics? Processes in the ps to µs time domain

Pump: Electric, Magnetic, Laser, THz, Shock Wave, etcProbe: NRS (both coherent & incoherent elastic and incoherent inelastic)

Can a single shot characterize the far-from-equilibrium processes?

Future of Ultimate Metrology

Nuclide	⁵⁷ Fe	⁴⁵ Sc	²²⁹ Th
Abundance, a (%)	Stable (2.14%)	Stable (100%)	7340 yrs (100%)
E _o	14.4 keV	12.4 keV	7.6 eV
l _g - l _e	1/2 ⁻ - 3/2 ⁻	7/2+ - 3/2-	5/2+ - 3/2+
Multipolarity	M1	M2	M1
Т_{1/2}	99 ns	318 ms	26,000 s
Γ	4.6 neV (0.96 mm/s)	1.46 feV (35 nm/s)	17.5zeV (0.7 pm/s)
Q = Γ/ Ε _ο	3.2 x 10 ⁻¹³	1.18 X 10 ⁻¹⁶	2.30 X 10 ⁻²¹
α	8.21	~ 413	~1000
თ _o cm²	2.56 X 10 ⁻¹⁸	1.98 X 10 ⁻²⁰	2.11 X 10 ⁻¹⁴
$\sigma_{o\prime}\sigma_{el}$	426	4	< 20
Unit Resonant Absorption Thickness (f=1, a = 100%)	4.6 (μm) (3.8 X 10 ¹⁹ /cm²)	12.0 (μm) (4.8 X 10 ¹⁹ /cm²)	1.6 (nm) (4.9 X 10 ¹⁵ /cm ²)

míllí, mícro, nano, píco, femto, atto, zepto, yocto

Coherent Nuclear Excitation of ²²⁹ Th

Issues:

- Hyperfine interaction of ground and excited moments with surrounding electronic and nuclear moments
 Elimination of all sources of line broadening
- Detection of 7.6 eV radiation

Approaches:

- Intense laser excitation and detection through laser spectroscopy of atomic transitions (Habs: this symposium)
- Excitation of 29.19 keV state with x-ray SR/XFEL to populate 7.6 eV state (Argonne)
- Preparation of stripped nuclei in storage-cooler rings or in ion-traps (Suggestion: P. Kienle, TU Munich)

Optical Detection Scheme: Test of Fundamental Physics

E. Peik, Chr. Tamm, Europhys. Lett. 61, 181 (2003)

Dietrich Habs, The Lowest Nuclear Transition in ²²⁹Th: This Symposium Presentation

Gravitational Red Shift Scheme

Harvard

Summary:

1. Metrology, Fundamental Physics, Cosmology, Gravitation

Nobel Prize	Laureate (s)	Technique	Resolution	Applications
1960	Mössbauer	NRS	1: 10 ¹³	Numerous
2005	Hall and Hänch	Frequency Comb	1:10 ¹⁵	Atomic Clock Metrology
????	?????	NRS Hyperfine Comb	1: 10 ¹⁶ (⁴⁵ Sc) 1: 10 ²¹ (²²⁹ Th)	Fundamental Science Cosmology Gravitation

Flambaum, PRL 97, 092502(2006); Burvenich et al, PRL 96, 142501 (2006)

2. Nonlinear Quantum Optics

Non-linear Nuclear Quantum Optics

Incident	Generated	Non-linear	
<u>Process</u>	Frequencies	Frequencies	Susceptibility
Parametric conversion	ω _π	$\omega_{\sigma}, \omega_{\iota} (\omega_{\pi} = \omega_{\sigma} + \omega_{\iota})$	$\chi^{(2)}(\omega_2; -\omega_3, \omega_1)$
2 nd (and Higher) Harmonic Generation	ω ₁	$\omega_2 (\omega_2 = 2 \omega_1)$	$\chi^{(2)}(\omega_2; \omega_1, \omega_1)$
Mixing	ω_1, ω_2	$\omega_3 (\omega_3 = \omega_1 + \omega_2)$	$\chi^{(2)}(\omega_3;\omega_2,\omega_1)$
Intensity dependent index of refraction	ω ₁	ω ₁	$\chi^{(3)}(-\omega_1; \omega_1, -\omega_1, \omega_1)$
2 photon absorption	ω ₁	_	$\chi^{(3)}(\omega_1; \omega_1, -\omega_1, \omega_1)$

$[C\kappa_1 + C\kappa_2] = \omega_M = 3 X 7.2 \text{ keV} = 14.4 \text{ keV}$

XFEL field strength is ~ 1 V.A⁻¹ \implies 10 keV

(Seb Doniach JSR 7, 216,2000)

Symposium: 50 YearsAfter - the Mössbauer Effect Today and in the Future
GarchingGopal ShenoyGarchingOctober 9-10, 2008Gopal Shenoy

Extra Reading

TDR XFEL workshop series Nuclear Resonant Scattering at the TESLA XFEL

Edited by H. Franz and U. van Burck February 25, 2001

Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution G. K. Shenoy · R. Röhlsberger (in press)

