

K.U.Leuven

B. Laenens J. Demeter K. Temst A. Vantomme

APS

W. Sturhahn S. Kharlamova

Comparative study of three Mössbauer techniques Why Fe₃Al?

• Experimental details

Sample preparation

Mössbauer spectroscopy

Time Resolved NRS

- Discussion
- Conclusion

Comparative study of three Mössbauer techniques Why Fe₃Al?

• Experimental details

Sample preparation

Mössbauer spectroscopy

Time Resolved NRS

- Discussion
- Conclusion

Comparative study of the three techniques by extracting <u>the magnetic</u> <u>structure of an Fe₃Al foil</u> from a MS spectrum, a time resolved NRS and an energy resolved NRS spectrum

* Fe₃Al has a cubic DO₃ structure with <u>two possible Fe environments</u>:

Fe(bcc): 2.492 μ B/ atom, Bhf = 31 T Fe(fcc): 1.939 μ B/ atom, Bhf = 24 T

complex magnetic structure

* The Fe(fcc) atoms could exhibit <u>metamagnetism</u> under high pressure (32 GPa)

J.Y.Rhee and B.N. Harmon, PRB 70, 094411 (2004)

Comparative study of three Mössbauer techniques Why Fe₃Al?

• Experimental details

Sample preparation

Mössbauer spectroscopy

Time Resolved NRS

- Discussion
- Conclusion

Sample preparation

3 micron thick ⁵⁷Fe₃Al-foil

melting of ⁵⁷Fe and Al grinding to a foil of 10 micron cold rolling to a foil of 3 micron (± 1 micron!)

3 micron thick ⁵⁷Fe₃Al-foil

Mössbauer spectroscopy

Mössbauer spectroscopy

Mössbauer spectroscopy

Measured spectrum = <u>incoherent addition</u> of sextets of peaks

* Four magnetic sites, Gaussian distribution included for each hyperfine field
* Site 1 and 3: ordered DO₃ stoichiometric Fe₃Al
* Site 2 and 4 : residual disorder, ...
* Isomer shift of *all* sites relative to Mössbauer reference
* Linear dependende of I onto H: I = AH+B

Time Resolved NRS

LE

Time Resolved NRS

Time resolved NRS

Measured spectrum = interference pattern

* Four magnetic sites, Gaussian distribution included for each hyperfine field
* Site 1 and 3: ordered DO₃ stoichiometric Fe₃Al
* Site 2 and 4 : residual disorder, ...
* Isomer shift of *three* sites relative to one reference site
* Linear dependende of I onto H: I = AH+B

Energy Resolved NRS

R. Callens et al., Phys. Rev. B 72 (2005) 081402(R)

* Four magnetic sites, Gaussian distribution included for each hyperfine field
* Site 1 and 3: ordered DO₃ stoichiometric Fe₃Al
* Site 2 and 4 : residual disorder, ...
* Isomer shift of *all* sites relative to the SS reference
* Linear dependende of I onto H: I = AH+B

Comparative study of three Mössbauer techniques Why Fe₃Al?

• Experimental details

Sample preparation

Mössbauer spectroscopy

Time Resolved NRS

- Discussion
- Conclusion

Comparison of the spectra

* The three spectra can be analyzed with <u>nearly the same model</u>

* Small discrepancies between the hyperfine field distributions can be assigned to <u>different parts of the sample</u> that are probed with the different techniques

Limitations of the techniques

Mössbauer spectroscopy: limited to samples containing enough nulcear resonant material

Limitations of the techniques

Limitations of the techniques

* The spectrum is a <u>coherent addition</u> of the different subspectra * Due to the coherence effect, the original positions of the resonance lines are affected * No direct extraction of the different hyperfine fields from the spectrum is possible

For samples with a <u>less complex hyperfine field distribution</u>, a direct extraction of the different magnetic components from the spectrum should be possible.

Applying the external field <u>perpendicular to the synchrotron plane</u>, results in an even easier to interpret energy resolved spectrum.

What happens to the spectrum if a phase transition occurs?

The phase transition can be followed in energy domain, but not in time domain!

Comparative study of three Mössbauer techniques Why Fe₃Al?

• Experimental details

Sample preparation

Mössbauer spectroscopy

Time Resolved NRS

- Discussion
- Conclusion

Conclusion

- * We measured a Mössbauer spectrum, a time and an energy resolved NRS spectrum <u>onto the same Fe₃Al-foil</u>.
 - * Comparison of the hyperfine field distributions indicates that the three spectra can be analyzed with <u>nearly the</u> <u>same model</u>.
 - * Both the time and energy resolved NRS technique lend themselves to the study of samples with reduced sizes.
 - * In most cases, the analysis of the energy resolved spectrum is <u>more straightforward</u> than the time resolved spectrum and allows one for an on-line analysis.