Anomalous Binding of ⁵⁷Fe Atoms in Metallic Chromium

J. Żukrowski, J. Cieślak, S. M. Dubiel AGH Kraków

INTRODUCTION Antiferromagnetism of chromium

Néel temperature ~ 313 K

Dubiel & Cieslak, Europhys. Lett., (2001)

$$\Lambda = 2\pi/q$$

$$\Lambda \approx 78 \text{ Å (55 ML)}$$

$$\sigma = -0.5 \cdot n(E_{\text{F}}) \cdot |\Delta|^2$$

• Theory – nonmagnetic

- Weak (< ∆ = 3.5-k-T_N ≈0.1 eV) because, to the first order, the SDW has a uniform charge (G. Grüner, Sol. Stat. Phys., 10 (1983) 183)
- Weak but inducing a distorsion of the charge-density near the impurity site (P. F. Tua & J. Ruvalds, PRB, 32 (1985) 4660)
- Weak and only affect the LSDW (Ch. Seidel, Phys. Stat. Sol. (b), 148 (1988) 327)
- Strong (~∆) and can lead to a static deformation of the SDW and destruction of a long-range order (I. Tütö & A. Zawadowski, PRL, 60 (1988) 1442)

• Theory – magnetic

• According to all theoretical calculations magnetic impurities have a stronger effect on the SDW than nonmagnetic ones. The orientation of their spins is affected by the local magnetic field produced by the SDW.

• Magnetic impurities can pin both TSDW and LSDW (Ch. Seidel, Phys. Stat. Sol. (b), 149 (1988) 327)

- Experiment nonmagnetic
 - Au: no effect for 0.2 1.0 at% (T_N and T_{SF} unchanged)

• Sn: ideal probe nucleus for MS; all features of SDWs measured with 119 Sn (T_N, T_{SF}, sign and amplitude of 3rd-order harmonics) as in pure Cr.

• V: very strong effect; acts as electron acceptor and quenches SDWs (T_N decreases at the rate of ~ 80 K/at % i.e. \leq 4 at% V drives T_N to 0 K).

$$\mathsf{E}_{\mathsf{o}} = -\mathbf{0}.\mathbf{5} \cdot \mathsf{n}(\mathsf{E}_{\mathsf{F}}) \cdot |\Delta|^2$$

- Experiment magnetic
 - Mn: very strong effect acts like electron donor and supports SDWs (amplitude and T_N increase) but changes ISDWs into CSDWs (Λ = n · a) at x ≈ 0.3 at%. For x ≥ 1 at% Λ = ∞ (normal AF).
 - Fe: very strange effect; decreases T_N (~20 K/at%) and T_{SF} and decreases the amplitude of SDWs, drives SDWs from ISDWs to CSDWs at x \approx 2.3 at%. ⁵⁷Fe ME spectrum is single-line at RT and slightly broadened at 4 K (B_{hf} \approx 3.5 T) despite strong (~1.5 μ_B) magnetic moment at Fe atom.

RESULTS Mössbauer spectra Cr<0.1%⁵⁷Fe

RESULTS Debye temperature

$\langle CS \rangle (T) = IS(0) + IS(T) + SOD(T)$

 $\Delta \theta_{\rm D} = \theta_{\rm D}$ (HT)- $\theta_{\rm D}$ (LT) \approx 100 K

RESULTS Force constant - models

$$\kappa = \frac{mk_B^2 \Theta_D^2}{4\hbar^2}$$

Gupta & Lal, Phys. Stat. Sol. (b), <u>51</u> (1972) 233

$$\kappa'/\kappa = \left(\Theta_{eff}/\Theta_{D}\right)^{2} (m'/m)$$

Visscher, PR, <u>129 (1962)</u> 2059 (Steyert & Taylor, PR, <u>134</u>(1964) A716)

RESULTS 4.2 K spectrum

B = 51.6 sinα + 11.1 sin3α - 3.7sin5α + 2.1sin7α + IS = 0.03 sin2α

Distortion of the SDWs by ⁵⁷Fe atoms and GB

CONCLUSIONS

- ⁵⁷Fe atoms are very weakly coupleded to Cr matrix
- Strength of the coupling is anomalously temperature dependent; in HT 'phase' it is by a factor ~2 stronger than in LT 'phase'
- ⁵⁷Fe atoms disturb (pin) SDWs they affect both their amplitude and shape

Thank you for your attention

Temperature Dependence of Θ_{D}

- metallic Fe (MS) $\Theta_{\rm D} = 430 \pm 15$ K for T = 80 - 300 K
 - $\Theta_{\rm D}$ = 400 \pm 30 K for T = 300 700 K
- Θ_{D} = 310 \pm 15 K for 700 1050 K
- $\Theta_{\rm D}$ = 300 K for T= 1050 1200 K

Costa, Cieslak & Dubiel, 2008

Preston et al., Phys. Rev., <u>128</u> (1962) 2207