

Atomic vibrations in glasses: 50 years ago,

and in future

A. Chumakov, A. Monaco, G. Monaco, I. Sergueev, W. Chrichton, O. Leupold, R. Rüffer ESRF

today,

U. van Bürck, W. Schirmacher, A. Meyer, T. Asthalter, W. Petry

TUM *L. Comez, D. Fioretto* Perugia University *Y.-Z. Yue* Aalborg University *J. Korecki* AGH University, Krakow

Introduction

before 1971:

Glasses: no periodicity, no zone boundaries: ideal elastic medium

The low temperature heat capacity of pure dielectric crystalline solids is known (Chapter 5) to follow the Debye T³ law, precisely as expected from the excitation of long wavelength phonons. The same behavior was expected in glasses and other amorphous solids—the point was so obvious that it did not encourage experimental investigation.

Introduction

sNIL.		
<u>ESRF</u>	Introduction	European Synchrotron Radiation Facility
Web <u>Images</u>	<u>Video News Mans Gmail more</u> ▼	
Goog	gle boson peak glass Search Advance Preferen	rd Search ces
Web		Results 1 - 10 of about 204,000 for thoson peak glass.
The boson per The damage-form boson peak regis cat.inist.fr/?aMod Physica B: Co For caesium and independent of th linkinghub.elsevie Physica Author Ke Reference linkinghub, [More res	 eak in melt-formed and damage-formed glasses: A defect hed glass exhibits a DSC thermogram strikingly similar to that in the ion, and find the damage-formed glass boson peak to be dele=afficheN&cpsidt=18329345 - Similar pages ondensed Matter : Boson peak in modified borate I barium borate glasses, the peak frequency of boson peak is almost the composition. While for lithium borate glass, er.com/retrieve/pii/S0921452698012344 - Similar pages B: Condensed Matter : On the wave vector dependence of the eywords: Boson peak; Glass; Inelastic neutron scattering. Article Outline. • es. The low-temperature properties of glasses are different elsevier.com/retrieve/pii/S0921452698013799 - Similar pages 	
Vibrations and soft sphere glass at about 5% of th www.iop.org/EJ/a	d relaxations in a soft sphere glass ; boson peak and s shows a pronounced boson peak . The, boson peak frequency is very low he maximal frequency. The shape of the article/0953-8984/16/27/005/cm4_27_005.pdf - <u>Similar pages</u>	
Vibrations and Vibrations and rel Schober, H. R., A adsabs.harvard.e	d relaxations in a soft sphere glass: boson peak and elaxations in a soft sphere glass: boson peak and structure factors. Authors:, Affiliation: edu/abs/2005cond.mat2611S - <u>Similar pages</u>	
Origin of	f the boson peak in a network glass B2O3	× 00 W

Origin of the **boson peak** in a network **glass** B2O3. Authors: , Engberg, D.; Wischnewski, A.; Buchenau, H.; Börjesson, L.; Dianoux, A. J.; Sokolov, A. P.;

The European Light Source

The European Light Source

Introduction

The European Light Source

Nuclear Inelastic Scattering: resonant absorption of x rays by moving nuclei:

DOS in absolute and correct scale:

Raman and neutron scattering No

Nuclear inelastic scattering

you can do almost everything, but not always convenient and not necessarily precise you can only cut, but precisely, sharp, deep, and exactly where you need it

Results and discussion European Synchrotron Radiation Facility

132

Rudolf L. Mössbauer:

4. Versuchsanordnung

Fig. 2 zeigt die Versuchsanordnung, Fig. 3 den Kryostaten. Die Absorber, zwei je etwa 0,4 mm di bzw. Platinbleche von 35 mm Durchmesser warer der Abkühlung eine ungehinderte Kontraktion de

Untersucht wurde die Absorption der beim 1 ausgesandten 129 keV Gammastrahlung in Iridii Zerfallschema [7] und das beobachtete Spektrum

AGGOORING KASTLE der 95d-Aktivität von Os¹⁸⁵ enthält [8]. Die harten eim K-Einfang von Os¹⁸⁵ ausgesandten Linien von Re¹⁸⁵ bei 640 keV und bei 875 keV durchsetzten die Absorber

Fig. 2. Versuchsgeometrie. A Absorber-Kryostat; P Kryostat mit Quelle; D Detektor: NaJ(TI)-Kristall (22 mm hoch, 40 mm Durchmesser) und Photomultiplier; K Kollimator (Bohrung 18 mm); A und P werden von den Armen eines schweren Stativs getragen

(I)

Results and discussion European Synchrotron Radiation Facility

cooling rate:

Energy Landscape Model

Figure 4. The second moment of the VDOS for a model molecu inherent structures characterized by the structural temperatures peak intensity increases with increasing structural temperature.

C.A.Angell et al., ~JPCM 15, S1051 (2003)

RE Results and discussion European Synchrotron Radiation Facility

Dependence of DOS on cooling rate:

- quenched from melt to water with a cooling rate of 1500 K/s,
- annealed for 30 min at Tg + 4K, cooled down with a rate of 2 K/s

Results and discussion European Synchrotron Radiation Facility

microscopic properties: Mössbauer spectroscopy

annealed

intermediate-range properties: X-Ray Scattering

macroscopic properties: p & Brillouin Light Scatt.

RE Results and discussion European Synchrotron Radiation Facility

FIG. 5. Boson peak energy as a function of Δq .

ENERGY (cm⁻¹)

Results and discussion European Synchrotron Radiation Facility

Dependence of DOS in glasses on density:

Heated up to *Tg*-70K, densified for 10 min at 1 GPa at 2 GPa at 3 GPa

Permanently densified samples: sodium silicate glass $Na_2 Fe Si_3 O_{8.5}$ Tg = 744 K

A.Monaco et al, PRL 97 135501 (2006)

RE Results and discussion European Synchrotron Radiation Facility

Specific heat (J g⁻¹ K ⁻¹)

12

500

Temperature (K)

For glasses with various

cooling rate (*Tf* = *Tg*-10K, *Tg*+150K);

density $(\Delta \rho / \rho = 6\%)$.

Already summary?

Extrapolation of DOS to $E \rightarrow 0$ is consistent with the Debye level as E=0 there is nothing but sound

Transformation of DOS is described by changes of elastic medium as it should be for sound waves

Functional dependence?

functional dependence:

generic motions of molecules and occasional molecular modes

ESRF

More results and discussion

European Synchrotron Radiation Facility

functional behavior is consistent with sound wave model

Now indeed summary

Summary:

Extrapolation of DOS to $E \rightarrow 0$ is consistent with the Debye level at $E \rightarrow 0$ there is nothing but sound

> Transformation of DOS is described by changes of elastic medium entire DOS transforms like sound

DOS follow functional dependence of sound waves at *E* above the boson peak: nothing but sound

PostScript

temperature dependence of nuclear absorption: toluene glass

Acknowledgements

